

Electric Vehicles at Scale

Michael Kintner-Meyer

Project ID: van039

This presentation does not contain any proprietary, confidential, or otherwise restricted information

Overview

Project Details

Timeline

Start: June 2020

End: September 2021

Percent Complete: 65%

Budget

Total funding: \$550k **DOE Cost Share:** 100%

Partners

Southern California Edison

Electric Vehicles at Scale (Phase 2) – Distribution Grid Impacts

Challenge

- □ Wide-scale adoption of Electric Vehicles (EVs) could be limited if we don't address the distribution system challenge
- ☐ Distribution system planning practices don't reflect adequately the locational aspects and characteristics of growing EV loads.

Barriers

- ☐ System Analysis is difficult because of large diversity in distribution system circuits across the country (e.g., customer composition, circuit topology) challenges tool development.
- □ Uncertainty surrounding EV adoption, charging infrastructure and human behaviors makes distribution investment planning difficult.
- ☐ Lack of efficient methodologies and data to estimate adoption at circuit & customer-level EV adoption.

Relevance

Electric Vehicles at Scale (Phase 2) - Scope

Key Research Questions

- ☐ How to determine the EV hosting capacity of distribution system circuits?
- → How does mitigation through smart charge management enhance EV hosting capacity?
- ☐ How can distribution planning tools be updated to plan for EV growth?

Outcomes

- 1. Socio-economic EV forecast and adoption methodology that forecasts circuit-level EV adoption.
- 2. Open-source toolset in support of utility planning and investment decisions.
- 3. Results and methodology of high interest to SCE. SCE will adopt methodology for all SCE circuits
- 4. Insights into value of smart charge management

Impact on Barriers

- ☐ The socio-economic EV adoption forecast methodology provides customer & feeder-level forecasts.
- ☐ The methodology uses household income and home price data, key drivers for EV adoption, to minimize forecast uncertainty.

Impact on Sub-program Objectives

This project enables utility analysts and distribution planners to plan for infrastructure upgrades to avoid infrastructure limitation hindering continual growth in EV adoption

Milestones

	Deliverable	Deadline	Status
1	Briefing material on scope of distribution analysis and all of the assumptions	November 2020	Complete
2	Intermediate results reporting: Preliminary results from application of hosting capacity analysis and smart charge management controls on SCE circuits.	February 2021	Delayed. Revised estimate 6/30
3	Briefing on lessons learned, outline of guideline of EV integration into distribution planning processes	May 2021	Delayed. Revised estimate: 9/30
4	Final report on analysis and guideline document	July 2021	Delayed. Revised estimate: 9/30

Delays due to NDA process with CA DMV and SCE. NDA signed on 5/7/2021.

Approach and Methodology

models

Impact Metrics		
Transformer thermal violation	100% rating exceedance for line, 180% for service transformers	
Line thermal violation		
ANSI A: 5 min voltage violation	$0.95 > V > 1.05 \mathrm{pu}$	
ANSI B: Instant voltage violation	0.90 > V > 1.10 pu	

Technical Accomplishments and Progress New High-Resolution Socio-Economic LDV EV Adoption Model

Novelty in Approach

- □ Data sources: Block income distributions, home prices, housing attributes (access to charging), vehicle registrations
- ☐ Projections of EV adoption by households that can be located on the map for distribution planning.
- □ Adoption model can be calibrated to local, regional, state EV goals

Key Takeaways

- ☐ Key driver for EV adoption
 - ☐ Household income
 - ☐ Access to charging (housing characteristics)
- □ Forecasts for EV adoption will be produced down to the neighborhood level, which will then be mapped to feeder to generate circuit-level EV adoption forecast for every study year.

Technical Accomplishments and Progress New High-Resolution Socio-Economic LDV EV Adoption Model

Example: Application to region in West Hollywood, CA

- □ Existing household vehicle registration was obtained from California Department of Motor Vehicles
- □ Household income estimated from county tax assessor's data and Census Bureau's income distribution data at the block level; charging accessibility inferences based on housing characteristics also from tax assessor data
- □ Assumes dedicated market transformation effort by the California Energy Commission and Southern California Edison to obtain 'zero emission vehicle' goals

Key Takeaways

☐ We can calibrate the model with State, municipal, or utility targets for EV penetration for a given future year

Preliminary results

	Group 1	Group 2	Group 3
EV Range	25-300 mi	60-275 mi	PHEV 18-80 mi
Max Adoption	595	507	325

Technical Accomplishments and Progress

Grid Analysis with GridLAB-D Prototypical Feeder

Impact Metrics	
Transformer thermal violation	180% for service transformers
Line thermal violation	100% rating exceedance for line,
ANSI A: 5 min voltage violation	$0.95 > V > 1.05 \mathrm{pu}$
ANSI B: Instant voltage violation	0.90 > V > 1.10 pu

Simulation Details

- Study years: 2025 to 2050 in 5-year increments
- Duration: Summer [June, July, August]. Can be over 1-year
- 500 adoption scenarios randomly drawn for each study year
- A grid component is flagged if its operating limit is violated for more than cumulative 2 hours in more than 5% scenarios
- Develop mitigation scenarios: smart charge management, infrastructure upgrades

Key Takeaways

- □ Analysis will identify constrained components in the grid infrastructure
- ☐ Analysis will provide location-specific bottlenecks as a function of time, guiding utility investment decisions
- ☐ Mitigation analysis will include smart charge management and infrastructure upgrade as options

Collaboration & Coordination

- ☐ Southern California Edison, Utility partner
 - Not funded by DOE
 - Role:
 - Provide SCE feeder circuit data to enable analysis using realistic models
 - Work tightly with PNNL technical team to adopt methodologies for their own analyses
 - Expected benefits to SCE and other utilities:
 - High interest in the EV adoption modeling. SCE's current EV adoption approach not as granular
 - SCE interested in applying EV adoption methodology to larger number of circuits
 - Methodology directly applicable to other utility organizations

Remaining Challenges and Barriers

Research challenges and barriers
☐ Modeling adoption at multi-unit dwellings
☐ Adoption model for commercial fleets at the feeder level (L/M/HDV)
☐ User behavior modeling – how EV owners charge their cars?
Impact challenges and barriers
PNNL approach requires cluster computing. Only large utility may have computation capabilities to use PNNL developed Methodology and Open-Source scripts
☐ Tech transfer funding is required to ensure methodology is accessible to smaller utilities with limited computational infrastructure (non-cluster computing)
☐ Socio-economic data for states other than CA may not be readily available

Remaining Research

Plans for rest of FY21:

- □ Apply PNNL's EV forecasting methodology and determine impact to specific SCE circuit operation
- ☐ Perform valuation (investment vs. benefits) of smart charge management and traditional infrastructure upgrade strategies as mitigation

Proposed Future Research (FY22)

- ☐ Technology transfer of EV@scale, Phase II outcomes with large and small utility organization
 - ☐ Planning for simplified approach that could be performed by small PUD
 - ☐ Education and outreach: dissemination of open-source methodologies
- □ Enhancement of EV penetration model for commercial fleets (LDV, MDV, HDVs) and integration into grid modeling scripts

Summary

- □ Circuit-level EV adoption forecasting is essential to effectively determine impact of EV charging on feeder operation
- □ Current utility planning tools need to be updated with circuit-specific EV adoption models to accurately determine circuit upgrades necessary to accommodate EV growth
- ☐ The outcomes from this project directly address these needs:
 - A socio-economic EV adoption forecast methodology that outputs circuit-level adoption
 - An open-source toolset for utilities to perform infrastructure upgrade planning in the context of EVs
- □ Results from this study will be disseminated to broader audiences: universities, distribution planners

Technical Back-Up Slides

Technical Accomplishments and Progress

Grid Analysis with GridLAB-D Prototypical Feeder

Impact Metrics		
Transformer thermal violation	100% rating exceedance for line,	
Line thermal violation	180% for service transformers	
ANSI A: 5 min voltage violation	0.95 > V > 1.05 pu	
ANSI B: Instant voltage violation	0.90 > V > 1.10 pu	

Simulation Details

- Study years: 2025 to 2050 in 5-year increments
- Duration: Summer [June, July, August]
- 500 adoption scenarios randomly drawn for each study year
- An asset is flagged if its operating limit is violated for more than cumulative 2 hours in more than 5% scenarios

Key Takeaways

- Analysis will identify constrained components in the grid infrastructure
- ☐ Results from the tool will provide location-specific bottlenecks as a function of time, guiding utility investment decisions
- ☐ Mitigation analysis will include smart charge management and infrastructure upgrade as options